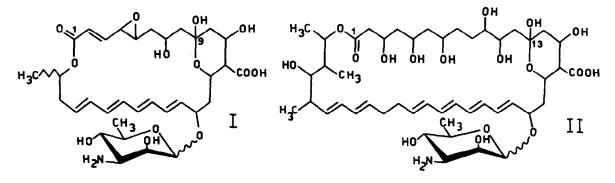
POLYENE ANTIFUNGAL ANTIBIOTICS :

α and β glycosidic structures in lucensomycin and nystatin

A. Boicelli


Laboratorio dei Composti del Carbonio Contenenti Eteroatomi e Loro Applicazioni del C.N.R., Via Tolara di Sotto 89, Ozzano E. (Bologna), Italy

G. Rapi, A. Ricci, M. Chelli and M. Ginanneschi

Centro di Studio sulla Chimica e la Struttura dei Composti Eterociclici e Loro Applicazioni del C. N. R., c/o Istituto di Chimica Organica, Via G. Capponi 9, Firenze, Italy

(Received in UK 6 February 1978; accepted for publication 17 February 1978)

Antifungal antibiotics lucensomycin (I) and nystatin (II), present in their structures an amino sugar (mycosamine: 3-amino-3,6-dideoxy-D-mannose) glycosidically linked to the macrocyclic aglycone.¹

The ¹³C-NMR spectra (25.2 MHz, DMSO-d₆, t=33 °C) show, in the region around 100 ppm from TMS, which is characteristic for hemiketal and acetal C atoms, ^{1,2,3} signals at 95.8, 96.2, 96.3 ppm for I, ⁴ and at 96.6, 97.4 ppm for II. In the fully coupled ¹³C-NMR spectrum of I, the resonance at 96.3 ppm can be assigned to the quaternary 9-C. In turn signals at 96.2 and 95.8 can be associated with the 1'-C of the mycosamine, thus showing the existence of two types of acetal C atoms. In a similar way in II, the peak at 96.6 ppm results from the overlap of two resonances, one of them belonging to the 13-C and the other, as well as that at 97.4 ppm, can be assigned to the anomeric carbon of the mycosamine. The measured J_{1'C-1'H} values show that the resonance at 96.2 ppm in I (J=165 Hz) is due to a carbon bearing an equatorial proton, while those at 95.8 in I and 96.6 in II (J=158 Hz) are due to C atoms bearing axial protons. ⁵ These values fit well, in fact, Bock's correlation between the orientation of the anomeric protons and anomeric coupling constants (169-171 Hz for equatorial protons and 158-162 Hz for axial ones), which has proved to be valid 6,7 for free pyranoses and for glycopyranosides.

To ascertain the correct stereochemistry of the amino sugar, nystatin (II) has been hydrolysed and the mycosamine has been isolated as the N-carbobenzyloxy derivative (III);⁸ the resulting mixture of the $\,a$ and $\,eta$ anomers has been used as a conformational model for the mycosamine in antibiotics I and II. The 13 C-NMR spectrum of III shows two signals for the a and β anomeric carbons at 94.0 and 93.2 ppm and the corresponding $J_{1'C-1'H}$ values are 170 and 159 Hz respectively. Moreover 1 H-NMR (270 MHz, DMSO-d₆ and pyridine-d₅, t=29 °C) indicate that both the anomers of III have the same conformation; the ${}^{3}J_{H_{a}H}$ (a anomer: $J_{12}=2.1, J_{23}=3.0, J_{34}=11.0, J_{45}=9.4 Hz; \beta$ anomer: $J_{12}=2.6, J_{23}=2.8, J_{34}=10.5, J_{45}=9.3$ Hz) are in fact only compatible with a ${}^{4}C_{1}$ conformation but not for example with an inverted chair ${}^{1}C_{4}$, 9 less likely also because of steric interactions of bulky groups. The similarity of J_{1/C-1/H} for III and the amino sugar glycosidically linked to the macrolides in I and II is therefore strongly suggestive of α and β configurations at the anomeric centres in these two antibiotics. Furthermore analysis of the $J_{1'C-1'H}$ values suggests that whereas the β anomer maintains the ideal chair conformation when linked to the macrolide backbone, the a is somewhat distorted. ¹⁰ The measured α / β ratios, deduced from the relative intensities of the peaks concerned, change with the nature of the aglyconic residue: the α anomer is 55% in I, but drops to 20% in II. These percentages are however only indicative because these antibiotics are natural blends of different natural active constituents 11 and the technique itself (¹³C-NMR-FT) suffers from relatively large uncertainties in quantitative determinations.

<u>Aknowledgements</u>: We gratefully aknowledge Dr. H. Spiesescke for making available the highfield NMR facilities at CCR-Euratom (Ispra) and Dr. J. Feeney (NIMR-London) for the helpful discussions. We are also indebted to Prof. A. Vigevani (Farmitalia-Milan) and to Dr. R. Raiconi (Squibb-Rome) for the generous gifts of lucensomycin and nystatin, respectively.

REFERENCES AND NOTES

 R. C. Pandey, K. L. Rinehart Jr., J. Antibiotics, 29, 1035 (1976); 2) J. B. Stothers, Carbon-13 NMR Spectroscopy, Academic Press, New York, N. Y., 1972; 3) K. Dornberg, H. Thrum, G. Engelhart, <u>Tetrahedron Lett.</u>, 4469 (1976); 4) because of the small difference of chemical shifts (0.1 ppm) these signals are more clearly detectable in the fully coupled ¹³C-NMR spectra; 5) the low intensity of the band at 97.4 ppm and the low solubility of II prevent to measure the related J. (C_1'H; 6) K. Bock, I. Lundt, C. Pedersen, <u>Tetrahedron Lett.</u>, 1037 (1973); 7) K. Bock, C. Pedersen, J. C. S. <u>Perkin II</u>, 293 (1974); 8) J. D. Dutcher, R. D. Walters, O. Wintersteiner, J. Org. <u>Chem.</u>, 28, 995 (1963); 9) G. Descotes, F. Chizat, J. C. Martin, <u>Bull. Soc. Chim. France</u>, 2304 (1970); 10) K. Bock, C. Pedersen, <u>Acta Chem. Scand.</u>, (<u>B</u>)29, 258 (1975); 11) A. H. Thomas, <u>Analyst</u>, 101, 321 (1976).